Hunter College of The City University of New York

MATH 301 Mathematical Methods for the Physical Sciences 3 hrs, 3 cr

TEXT: Partial Differential Equations with Fourier Series and Boundary Value Problems by Nakhlé H. Asmar, 2nd edition; Prentice-Hall

Preview of Applications and Techniques

- 1.1 What is a Partial Differential Equation?
- 1.2 Solving and Interpreting a Partial Differential Equation

Fourier Series

- 2.1 Periodic Functions
- 2.2 Fourier Series
- 2.3 Fourier Series of Functions with Arbitrary Periods
- 2.4 Half-Range Expansions: The Cosine and Sine Series
- 2.5 Mean Square Approximation and Parseval's Identity
- 2.6 Complex Form of Fourier Series
- 2.7 Forced Oscillations
- 2.8 Proof of the Fourier Series Representation Theorem
- 2.9 Uniform Convergence and Fourier Series
- 2.10 Dirichlet Test and Convergence of Fourier Series

Partial Differential Equations in Rectangular Coordinates

- 3.1 Partial Differential Equations in Physics and Engineering
- 3.2 Modeling: Vibrating Strings and the Wave Equation
- 3.3 Solution of the One Dimensional Wave Equation ,The Method of Separation of Variables
- 3.4 D'Alembert's Method
- 3.5 The One Dimensional Heat Equation
- 3.6 Heat Conduction in Bars: Varying the Boundary Conditions
- 3.7 The Two Dimensional Wave and Heat Equations
- 3.8 Laplace's Equation in Rectangular Coordinates
- 3.9 Poisson's Equation: The Method of Eigenfunction Expansions
- 3.10 The Maximum Principle

Partial Differential Equations in Polar and Cylindrical Coordinates

4.2 Vibrations of a Circular Membrane: Symmetric Case

Sturm-Liouville Theory with Engineering Applications

6.2 Sturm-Liouville Theory